Data Anomalies – Automated Detection¶
Purpose¶
Catch anomalies without writing rules.
Technical Features¶
Metrics analyzed¶
- Record volume
- Missing values
- Distributions & histograms
- Value ranges
- Uniqueness
Intelligent detection¶
- Uses historical learning to define expected ranges dynamically
- Flags anomalies when actual data falls outside expected boundaries
Detection Scenarios¶
- Volume drops/spikes → e.g., missing half of daily transactions
- Column swaps → first name and last name columns reversed
- Unexpected values → “Zurich” showing up in Austrian cities
Value¶
Automates what would normally require hundreds of manual rules.