Skip to content

Data Anomalies – Automated Detection

Purpose

Catch anomalies without writing rules.

Technical Features

Metrics analyzed

  • Record volume
  • Missing values
  • Distributions & histograms
  • Value ranges
  • Uniqueness

Intelligent detection

  • Uses historical learning to define expected ranges dynamically
  • Flags anomalies when actual data falls outside expected boundaries

Detection Scenarios

  • Volume drops/spikes → e.g., missing half of daily transactions
  • Column swaps → first name and last name columns reversed
  • Unexpected values → “Zurich” showing up in Austrian cities

Value

Automates what would normally require hundreds of manual rules.